

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR

(AUTONOMOUS)

B.Tech I Year II Semester Supplementary Examinations March 2021 DIGITAL LOGIC DESIGN

(Common to CSE & CSIT)

Time: 3 hours

PART-A

R18

Max. Marks: 60

		(Answer all the Questions $5 \times 2 = 10$ Marks)	
1	a	Define duality property.	2M
	b	Define Minterm & Maxterm.	2M
	c	Explain Applications of Multiplexer.	2M
	d	Define Race Around Condition.	2M
	e	What is BIT, BYTE and, WORD.	2M
		PART-B	
		(Answer all Five Units $5 \times 10 = 50$ Marks)	
		UNIT-I	
2	a	Convert the following	
		a) $(A1D)_{16} = ()_{10}$	
		b) $(453)_8 = ()_{10}$	5M
		c) $(10110011)_2 = ()_{10}$	
		d) $(5436)_{10} = ()_3$	
	b	State and Explain the DeMorgan's Theorem and Consensus Theorem.	5 M
		OR	
3	a	Represent the decimal number 3452 in i) BCD ii) Excess-3 codes.	5M
	b	Simplify the following boolean expressions using Boolean algebra:	
		i) $A'B(D'+C'D)+B(A+A'CD)$	5M
		ii) $XYZ'+X'YZ+XYZ+X'YZ'$	
		UNIT-U	
4	9	Simplify the Boolean expression using K-MAP	
2	a	$F(A B C D) = \sum m(1 2 3 8 9 10 11 14) + d(7 15)$	5M
	h	Obtain the Complement of Boolean Expression	
	U	i) A+B+A'B'C	5M
		ii) $AB + A (B + C) + B'(B+D)$	CIVI
		OR	
5		Simplify the Boolean expressions to minimum number of literals	
		i) $(A + B)(A + C')(B' + C')$	
		ii) $AB + (AC)' + AB'C (AB + C)$	10M
		iii) (A+B)' (A'+B')'	
		iv) $A'B(D'+C'D)+B(A+A'CD)$	
		UNIT-III	
6	a	Design a circuit for a 3×3 bit binary multiplier.	5M
5	b	What is memory decoding? Explain the construction of 4 X 4 RAM?	5M
	2	OR	
7	a	Design a 4 bit binary parallel subtractor and explain operation in detail.	6M
	b	Design the combinational circuit of 4 Bit Parallel Adder.	4M

R18

						UN	IT-I	V
0	Evelain	the I	 diamana	ofthe	CD	fin	flom	

Q.P. Code: 18CS0502

a Explain the Logic diagram of the SR flip-flop. **6M** 8 **b** What is state assignment? Explain with a suitable example. **4M** OR 9 a Enumerate the difference between Combinational & Sequential circuits. **5M b** Design and draw the 3-bit up-down synchronous counter. **5M UNIT-V** 10 Implement the following function using PLA $A(x,y,z) = \sum m(1,2,4,6)$ **10M** $B(x,y,z) = \sum m(0,1,6,7)$ $C(x,y,z)=\sum m(2,6)$ OR

11	a Encode the 11-bit code 10111011101 into 15- bit information code.			
	b	Explain about the TTL family.	4M	

END